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Abstract. An attempt has been made to derive an expression for the energy for the hydrogen 
atom in a uniform magnetic field having dependence on only one variable as conjectured 
by Feneuille. The Schrodinger equation is transformed by a complex Kustaanheimo-Stiefel 
transformation to that for a four-dimensional oscillator with a constraint. The equivalent 
oscillator problem is solved approximately to obtain an expression for the quantity n 2 E  
( n  being the principal quantum number, E the energy) as a function of a single variable 
p,  = n 3 w ,  (w, being the cyclotron frequency). Agreement with experimental observations 
i s  discussed. 

1. Introduction 

In recent years considerable effort has been devoted by researchers to understand the 
problem of the hydrogen atom in a uniform magnetic field. Solution of this seemingly 
simple problem poses great difficulty because of the presence of the diamagnetic term 
which renders it non-separable. While at vanishing magnetic fields the Hamiltonian 
has spherical symmetry, it has cylindrical symmetry for high magnetic fields, and there 
exists no natural parameter capable of adiabatically changing the symmetry from 
spherical to cylindrical. Non-integrable systems exhibit in general irregular spectra 
which may be approximated in certain limiting cases by regular spectra (for a recent 
review in the particular context of the hydrogen atom in magnetic field see Friedrich 
and Wintgen (1989)). Attempts have been made to treat the problem in various 
semiclassical and quantal approximations by separating it into weak and strong field 
regimes depending on whether the value of the ratio of the diamagnetic term to the 
Coulomb term is small or large. Studies in the low field regime (Clark and Taylor 
1982, Delos er a1 1983, Wintgen and Friedrich 1986a, b) are helped by the separability 
due to the existence of an invariant (Solov’ev 1981, Herrick 1982, Gay er a1 1983, 
Delande and Gay 1984; see also the recent review by Rau 1990). On the other hand, 
the electronic motion in the strong field regime is more or less planar and has been 
treated by many authors (Friedrich 1982, Greene 1983, Chu and Friedrich 1983, 1984, 
Friedrich and Wintgen 1985). A non-perturbative variational approach was also 
adopted by Smith er a1 (1972), Brandi (1975), Gallas (1984). However, these are 
computationally expensive and basis dependent (Zimmerman and Hullet er a1 1983). 
Nevertheless all these approaches lead to valuable and interesting information regard- 
ing the energies of the electronic motion. 
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A completely different but highly interesting phenomenological approach was 
adopted by Feneuille (1982)  in which, by combining experimental and  theoretical 
results so far obtained, he suggested that n 2 E  in the whole energy range might depend 
on only one variable pc = n 3 w ,  ( n  being the principal quantum number, w, = eB/  mc 
the cyclotron frequency, B the magnetic field strength and E the energy eigenvalue). 
Gallas et a1 (1983)  (see also Wintgen and Friedrich 1987) showed that for high Rydberg 
states ( n  * 1) Feneuille's empirical conjecture is a direct consequence of the electronic 
motion in the z = 0 plane perpendicular to the magnetic field. 

The purpose of the present paper is to report that Feneuille scaling can be achieved 
by treating the problem in an  oscillator basis and applying various approximations. 
With this end in view the Schrodinger equation is transformed to an equivalent 
four-dimensional constrained oscillator equation by the complex Kustaanheimo- Stiefel 
approximation. This is done in section 2 .  In  section 3 the energy E is derived in 
different approximations leading to an expression for n Z E  in terms of the single variable 
pc.  Discussion of results and conclusions drawn are presented in section 4. 

2. Hydrogen atom in uniform magnetic field as an anharmonic oscillator 

The Schrodinger equation for the hydrogen atom in a uniform magnetic field of strength 
B in the z-direction is given by 

where the paramagnetic and the diamagnetic terms are shown explicitly. Measuring 
energy in rydbergs, lengths in units of Bohr radius and  magnetic field in units of 
Bo = m2e3c /  h 3  = 2 . 3 5  x lo9 gauss, the equation reduces to 

where 

& = E ( & )  2h' r = ( - f ) r  me2 B = y B o .  

Introducing the complex form of the Kustaanheimo-Stiefel (1965)  approximation 
(Cornish 1984) given by 

the Schrodinger equation ( 1 )  in the new complex variables CA and is can easily be 
written (Bhaumik et a1 1986) as 

x - iy = 2121R x + iy = 2 5 A l f  z =  1 1 A 1 2 - / l B / 2  

together with the constraint 

The condition ( 3 )  eliminates the dependence of the actual wavefunction VI on the 
auxiliary fourth coordinate introduced through this complex mapping. A further change 
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of variable 

Ja = x, +ix, JB =x,+ix4 
converts equations (3) and (4) to 

+ 2y2(x; + x:)(x:+ x:)(xf + x:+ x:+ x 3  9 = 4* 1 
and 

=-(x3--x4”) a 
ax, ax3 

(4) 

which explicitly shows the formal equivalence of the hydrogen atom in a magnetic 
field with the four-dimensional anharmonic oscillator with frequency wO = 
[4(( y /  h ) L ,  - E ) ] ” , .  I t  is to be noted that the frequency wO depends on Lz of the state 
and the latter may be replaced by the definite value M h  corresponding to that state. 
The anharmonic term is of sixth order in coordinates of the four-dimensional oscillator. 
Furthermore, one can identify the constraint condition (5) with the L, of the atom. 

In the absence of the anharmonic term, equation (4) is a simple four-dimensional 
oscillator and may be solved easily (Bhaumik et a f  1986) by the introduction of 
annihilation operators 

1 (-i a/ax, +a/&-,) - i wo(x, * ix,) 
a, =- 

1 1 (-i a/ax3 + a/ax,) - i wO( x3 * ix,) 
b =- [  

= 2  JTW, 
and their Hermitian adjoints, a: and b: satisfying canonical commutation relations. 
If we denote the non-negative eigenvalues of a I a + ,  a’a-,  b:b+ and bTb- by n , ,  n - ,  
m+ and m -  respectively then the oscillator states can be labelled by In,, n - ,  m + ,  m-).  
However, the constraint condition ( 5 )  (which can be identified as the z component of 
the angular momentum, L z )  and the principal quantum number for the hydrogen atom 
(for y = 0) can be readily seen to be given by 

n , -n -=m--m,=  M 
n++ m ,  + 1 = n- + m-+ 1 = n. ( 7 )  

Thus defining v = n, - m,, the states can actually be labelled by In, v, M )  instead of 
traditional In, 1, m,). In these states we can calculate any required averages and matrix 
elements very easily. Thus 

1 
(x:+x:) =- ( n  + v - M )  

WO 

1 
(x:+x:) =- ( n  - U +  M )  

WO 

( (xf  + xf)’) = 7 [’( n + v ) ~ + ; +  M 2  - 3 M (  n + U)] 1 

WO 

( ( x : + x X : ) 2 ) = ~ [ ’ ( n - v ) ’ + ~ + M ’ + 3 M ( n - v ) ] .  1 

WO 
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3. Mean-field, variational and anharmonic perturbation for energy 

In this section we apply mean-field, variational and the anharmonic perturbation 
approximations to solve the Schrodinger equation for the four-dimensional anharmonic 
oscillator (4). 

3.1. Mean-$eld approximation 

To treat (4) in a mean-field approximation we approximate the anharmonic term 
neglecting the second- and higher-order correlations, replacing them by their averages 
over the oscillator states. Thus, representing expectation values by angular brackets 
( ), we obtain the anharmonic term in the mean-field approximation as 

2y’(x:+ x:)(x:+ x:)(x:+ x:+ x:+ x:) 

= 2y2[ -2(x:+x:)’(x:+ x:) - 2(x:+ x:)(x:+ x:)2 

+ {2(x:+ x:>(X:+ x:)+((x:+ xy)}(x:+ x:) 

+ {2(x:+ x:)(x:+ x:)+((x:+ x:)2)}(x:+ xi)]. (9) 

Substituting (9) in (4) we obtain 

where 

Cl’, = 4y2{2(x:+ x:)(x:+ x:)+ ((x:+ x:)~)} + W: 
0 : = 4y2{2(x: + xi) (x: + xi) + (( X: + x:)~)} + W: 

and 

Equation (10) can be solved to obtain an implicit equation for the energy eigenvalue 
(I‘+4) in terms of R, and 0;. Working as before in an oscillator basis and writing 
the quantum numbers as n, v and M as defined earlier, we get 

( n  + v - M)R, + ( n  - V +  M ) R h  

=4y + 

with 
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and 

where w: = 4(  y M  - E ) .  
Thus, in principle, solving ( 1 2 a ) ,  ( 1 2 b )  and ( 1 2 c ) ,  the energy E for the atom in 

the presence of a magnetic field can be determined in the mean field approximation. 
However, we are interested to obtain an expression similar to that of Feneuille (1982)  
where only the dependence of energy on n, the principal quantum number, is considered. 
For this reason we put M = 0, v = 0 to arrive at 

2n3 
2 R n  = 4 y 2  -+4  n3 

where 

These equations can be rearranged 

1 5  1 
2w 2 2 

E = --+- y 2 w 2 + -  

where w is to be found from 

4 y 2 w 4 + 2 w  - n2 = 0. 

to give the energy E as a function of w = n / R  as 

2 w2  
Y ?  

Equations (13) and ( 1 4 )  are the main results of this subsection giving E as a function 
of w. We can give an explicit solution for E which would appear to be a function of 
( n 3 y )  for large n as was conjectured by Feneuille. However, we postpone writing it 
explicitly until we have discussed the procedure for obtaining energy from other 
approximations. 

3.2. Variational approximations 

Variational approximations can also be applied to solve equation ( 4 )  where basis states 
are naturally taken to be the constrained four-dimensional oscillator states with 
frequency R, assumed to be the same, for simplicity, for all the oscillator degrees of 
freedom. Thus minimizing the expectation value of the Hamiltonian giving rise to ( 4 ) ,  
the expectation being evaluated between the variational states In,, n - ,  m , ,  m - ;  R ) ,  we 
obtain an equation for R. This in conjunction with the eigenvalue equation can be 
utilized to arrive at an expression for energy. Proceeding in this manner we get (for 
M = 0, v = O ) ,  

1 W 2  
E = - - + + Y ~ W ~ + ~ ~ ~  

2w n 

with w = n / R  given by the equation 

2 y 2 w 4  3 + 7  + 2 w - n 2 = 0 .  ( n’> 
Needless to say, the quantity n 2 E  scales in terms of ( n ’ y )  in this case also for high 
Rydberg states. 
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3.3. Anharmonic perturbation 

Instead of applying conventional perturbation theory, we use the method proposed 
by Halliday and Suranyi ( 1 9 8 0 )  which has the virtue of fast convergence and easy 
computability. In our case the Hamiltonian for the Schrodinger equation (4) given by 

+ 2 y 7 x :  + x : ) ( x :  + x ; ) ( x : +  x i +  x :  + x i )  

is rewritten in the form H = H,+ H, where 

Ho = 2 y 2 h , h 2 ( h ,  + h,) + i w i ( h ,  + h,) 

and H I  = H - H o .  Here 

and  

Thus h ,  and h2 are the two Hamiltonians for two two-dimensional oscillators, one in 
x ,  , x 2  and the other in x j ,  x4 with frequency R. Equation (17) represents such oscillators 
raised to the third power so that the sixth-order anharmonicity in H is taken care of. 
R is at this stage an  arbitrary parameter and can be determined up  to desired order 
by demanding the termination of the perturbation correction series for the energy at 
a specific order. Requiring, for example, the vanishing of the first-order correction 
( H , ) = ( H - H , , )  we get for M = 0 ,  v = O  

4 E  y’n’ Y2n n R  +- n - 26 -+ 0’ 2 - 0’ = 0. 
R 

Combining this with the eigenvalue equation (for M = 0 = v )  

n o  -- n +- 
R 

we can calculate the quantity n 2 E  for the atom as a function of n and y occurring in 
the product form ( n 3 y )  for large n. 

3.4. ‘Feneuille’ scaled expression for  n2E 

Calculation of energy for the atom in different approximations discussed in sections 
3.1,  3.2 and 3.3 boils down to the solution of a fourth-degree polynomial equation 
for w 

~ y 2 w 4 + 2 w - n ’ = ~  (20) 

and  substitution of its value in the equation for energy E 
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In equations (20) and (21) we have assumed n to be large and have introduced two 
parameters 6 and 5 whose values depend on the method of approximation adopted, 
e.g., 6 = 3 and 5 = 6 for the variational approach of section 3.2 (cf (15) and (16)). 

Solution of (20) gives 

where 

and P,  = n 3  y. 
Substituting w in (21) we obtain 

This is the general expression for n’E as a function of the scaling variable Pc (=  n3  y ) .  

4. Discussion and conclusion 

The expression for n’E given by (23) contains two parameters 6 and 5. Their values 
as mentioned earlier varies with the approximations used. However, taking a slightly 
different approach, we can determine their values by comparison with the results for 
the high and  low field limits. Thus noting that (Feneuille 1982) 

for low field (24) 
n 2 E  = 2p, - f i  /.3: ’ for high field (25) 

n’E = -1 +zP2  
S C  

(where energy is measured in rydbergs) we obtain s = 3.1 and 5 = 2.4. For these values 
of 5 and 5 the P c  value corresponding to the autoionization of the atom comes out to 
be 1.5 which is in good agreement with the experimental data of Gay er a1 (1980). It 
may be mentioned here that direct calculation of low and high P c  limits from (23) in 
various approximations discussed here show an apparent discrepancy with (24) and  
(25). For example, for low P,  equation (23) gives $ (instead of 2) as the coefficient of 
P f .  This deviation can be explained by the fact that by adopting the oscillator approach 
to the problem we have considered essentially the ‘vibrational states’ for the system 
having O(2) x O(2) symmetry. For these states the correction to energy is -$f to 
order Pf  for low P c  as was shown by Herrick (1982). 

Further, to arrive at the scaling results of Feneuille we have put M = 0, y = 0. The 
M and v dependence of the energy complicates the analysis and no  simple analytical 
solution for energy is possible. But it is evident from the equations for energy and  
frequency that for M f 0, Y # 0, scale breaking terms appear in n’ E even for large n. 
This supports the conclusion drawn by Gallas er a1 (1983) that scaling reflects the 
dynamics of the electronic motion in the z = 0 plane. 

In conclusion we have derived analytically an  expression for the quantity n’E 
exhibiting scaling in the sense that i t  depends on only P , .  To achieve this we have 
transformed the problem into an equivalent oscillator one which admits easy application 
of standard approximations. We believe that this oscillator approach is an extremely 
useful one to treat and understand similar problems of the Stark effect, the effect of 
crossed magnetic and electric fields, etc in an atom. We shall report the results of such 
analyses in the future. 
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